The CO-substitution reactions of analogues of $[Fe_2(\eta-C_5H_5)_2(CO)_2(\mu-CO)_2]$ in which the two cyclopentadienyl ligands are linked by a two-carbon chain

M. Gary Cox and A.R. Manning

Department of Chemistry, University College, Belfield, Dublin 4 (Ireland) (Received July 23, 1993)

Abstract

The CO ligands in various complexes $[Fe_2(\eta,\eta-C_5H_4-A-B-C_5H_4](CO)_2(\mu-CO)_2]$ have been substituted by PR₃ (1 CO ligand replaced), P(OR)₃ (1 CO ligand replaced), and Ph₂P(CH₂)_nPPh₂ where n = 1, 2, or 3 (1 or 2 CO ligands replaced). When A-B = R,S-CH(NMe₂)CH(NMe₂) or CH₂C(O) the substitution may be brought about thermally in refluxing di-n-butyl ether, but when A-B = R,R/S,S-CH(NMe₂)CH(NMe₂) this fails, and UV photolysis is required. The thermal reaction between R,S-[Fe₂{ η,η -C₅H₄CH(NMe₂)CH(NMe₂)C₅H₄)(CO)₂(μ -CO)₂] and Ph₂P(CH₂)nPPh₂ gives two products, R,S-[Fe₂{ η,η -C₅H₄CH(NMe₂)CH(NMe₂)C₅H₄){Ph₂P(CH₂)_nPPh₂(μ -CO)₂] and [Fe₂(η,η -C₅H₄CHC(NMe₂)C₅H₄){Ph₂P(CH₂)_nPPh₂)(μ -CO)₂] and their proportion found to increase with increasing *n*. The IR spectra of the [Fe₂(η,η -C₅H₄-A-B-C₅H₄)(CO)(L)(μ -CO)₂] complexes where L = PMePh₂ show a doubling of the absorption band of the terminal CO (t-CO) which is attributed to isomerism arising from restricted rotation about the Fe-P bond, whilst comparison of the ν (CO) frequencies where L = P(OR)₃ and L = PR₃ suggests that the variation of electron density on one Fe atom is largely experienced by the remaining t-CO ligand coordinated to the other Fe atom and not by the two shared μ -CO ligands. Dynamic NMR studies show that when A-B = R,S-CH(NMe₂)CH(NMe₂) there is a slowable restricted rotation about the ring-linking C-C bond but not for other A-B, and that for the various diphosphine complexes, it is possible to slow conformational changes within th

Key words: Iron; Cyclopentadienyl; Phosphine; Substitution; Fluxionality

1. Introduction

Although the CO-substitution reactions of $[Fe_2(\eta - C_5H_5)_2(CO)_2(\mu - CO)_2]$ with mono- and bidentate P^{III} ligands have been studied extensively [1], much less effort has been devoted to related complexes in which the two cyclopentadienyl ligands are linked and the $Fe_2(CO)_4$ moiety is constrained to a *cis* conformation. Cotton *et al.* [2] have prepared $[Fe_2\{\eta,\eta - C_5H_4CH-(NMe_2)CH(NMe_2)C_5H_4\}(CO)\{P(OPh)_3\}(\mu - CO)_2]$ and $[Fe_2\{\eta,\eta - C_5H_4CMe_2CMe_2C_5H_4\}(CO)\{P(OPh)_3\}(\mu CO)_2]$ from tetracarbonyl precursors and $P(OPh)_3$. Nelson and Wright obtained $[Fe_2\{\eta,\eta - C_5H_4SiMe_2-$ C_5H_4 (CO)(PPh₃)(μ -CO)₂] and [Fe₂{ η,η -C₅H₄SiMe₂-C₅H₄} (P(OPh)₃)₂(μ -CO)₂] by reaction of [Me₂Si{C₅-H₄Fe(CO)(L)I₂] (L = PPh₃ or P(OPh)₃) with ⁿBu-Li at -78°C [3], and [Fe₂{ η,η -C₅H₄SiMe₂C₅H₄]-{Ph₂P(CH₂)_nPPh₂}(μ -CO)₂] by the UV-initiated reaction of [Fe₂{ η,η -C₅H₄SiMe₂C₅H₄)(CO)₂(μ -CO)₂] with Ph₂PCH₂PPh₂ and Ph₂PCH₂CH₂PPh₂ [4].

2. Experimental details

Published methods were used to prepare $[Fe_2[\eta,\eta-C_5H_4-A-B-C_5H_4](CO)_2(\mu-CO)_2]$ $[A-B = R,S-CH-(NMe_2)CH(NMe_2)$ [5], $R, R/S, S-CH(NMe_2)CH-(NMe_2)$ [5], $CH_2C(O)$ [6], $CHC(NMe_2)$ [6]] and $[Fe_2-(\eta-C_5H_5)_2\{Ph_2P(CH_2)_nPPh_2\}(\mu-CO)_2]$ (n = 2 or 3) [1]. Other chemicals were purchased.

Correspondence to: Professor A.R. Manning.

All reactions were carried out under nitrogen in solvents which had been dried and deoxygenated by refluxing over calcium hydride, and were monitored by IR spectroscopy.

2.1. The reactions of $[Fe_2\{\eta,\eta-C_5H_4-A-B-C_5H_4\}$ - $(CO)_2(\mu-CO)_2]$ with P^{III} ligands

A solution of equimolar amounts of R,S-[Fe₂[η,η -C₅H₄CH(NMe₂)CH(NMe₂)C₅H₄](CO)₂(μ -CO)₂] and L = PMePh₂, PR₃ or P(OR)₃ (R = Me or Et) in di-nbutyl ether (150 cm³) was refluxed for 30 min. The solvent was removed under reduced pressure, the residue chromatographed (alumina/dichloromethane), and the products recrystallized from dichloromethane/ pentane mixtures to give green crystals of R,S-[Fe₂[η,η -C₅H₄CH(NMe₂)CH(NMe₂)C₅H₄](CO)(L)(μ -CO)₂] in *ca.* 80% yield.

Under the same conditions $[Fe_2\{\eta,\eta-C_5H_4CH_2C-(O)C_5H_4\}(CO)_2(\mu-CO)_2]$ and $P(OEt)_3$ gave $[Fe_2\{\eta,\eta-C_5H_4CH_2C(O)C_5H_4\}(CO)[P(OEt)_3](\mu-CO)_2]$.

The bidentate ligands $Ph_2P(CH_2)_nPPh_2$ (n = 1, 2 or 3) and R,S-[Fe₂{ η,η -C₅H₄CH(NMe₂)CH(NMe₂)-C₅H₄}(CO)₂(μ -CO)₂] gave, after *ca*. 5 h, a mixture of green R,S-[Fe₂{ η,η -C₅H₄CH(NMe₂)-CH(NMe₂)C₅H₄}{Ph_2P(CH_2)_nPPh_2}(μ -CO)₂] and green [Fe₂{ η,η -C₅H₄CH₂C(O)C₅H₄}{Ph_2P(CH_2)_n-PPh₂}(μ -CO)₂] in a ratio which depended on n. [Fe₂{ $\eta,$ η -C₅H₄CH₂C(O)C₅H₄}(CO)₂(μ -CO)₂] gave [Fe₂{ $\eta,$ η -C₅H₄CH₂C(O)C₅H₄}{Ph_2P(CH_2)_nPPh_2}(μ -CO)₂] only, and [Fe₂{ η,η -C₅H₄CHC(NMe₂)C₅H₄](Ph₂P-(CO)₂] gives [Fe₂{ η,η -C₅H₄CHC(NMe₂)C₅H₄]{Ph_2P-(CH₂)_nPPh₂}(μ -CO)₂]. In the last case chromatography was not used. The total product yields from all the reactions were 75-80%.

The related reactions of R, R/S, S-[Fe₂{ η, η -C₅H₄-CH(NMe₂)CH(NMe₂)C₅H₄}(CO)₂(μ -CO)₂] took place only when the reaction mixtures were also irradiated with a Philips HPR 125 W UV lamp for 10–24 h, and gave R, R/S, S-[Fe₂{ η, η -C₅H₄CH(NMe₂)CH(NMe₂)-C₅H₄}(CO)(L)(μ -CO)₂] (L = PMe₃, PEt₃, PMePh₂ or

ГАВ	LE	1.	Melting	points	and	analy	ses of	comp	lexes o	lescribed	in	the	text
-----	----	----	---------	--------	-----	-------	--------	------	---------	-----------	----	-----	------

Ligand, L ^a	Melting	Analyses ^c					
	point (°C) ^b	%C	%H	%N	%Fe	%P	
$\overline{R,S-[Fe_2\{\eta,\eta-C_5\}]}$	H ₄ CH(NMe ₂)CH(N	$Me_2)C_5H_4)(CO)_3(L)$]				
P(OMe) ₃	142-145	46.8 (47.0)	5.5 (5.0)				
P(OEt) ₃	131-132	49.5 (49.7)	6.1 (6.1)	4.4 (4.6)	18.7 (18.5)	5.0 (5.1)	
PMe ₃	dec. 174	51.4 (51.6)	6.1 (5.5)	5.3 (5.5)	21.3 (21.9)	6.3 (6.1)	
PEt ₃	dec. 189	53.5 (53.9)	6.6 (6.6)	4.8 (5.0)		5.7 (5.6)	
PMePh ₂	212-214	60.7 (60.2)	5.7 (5.5)	3.9 (4.4)	17.2 (17.5)	5.0 (4.9)	
$R, R/S, S$ -[Fe ₂ { η	η -C ₅ H ₄ CH(NMe ₂)	CH(NMe ₂)C ₅ H ₄)(CC)) ₃ (L)]				
P(OMe) ₃	194–196	46.2 (46.9)	5.5 (5.0)	4.5 (5.0)		5.7 (5.5)	
PMe ₃	dec. 223	52.3 (51.7)	6.2 (5.5)	5.4 (5.5)	22.4 (21.9)		
PEt	dec. 210	53.9 (53.9)	6.6 (6.6)	4.7 (5.0)			
PMePh ₂	dec. 230	60.2 (60.2)	5.6 (5.5)	4.0 (4.4)	17.7 (17.6)	5.1 (4.9)	
$[Fe_2(\eta,\eta-C_5H_4C_5)]$	CH ₂ C(O)C ₅ H ₄)(CO)) ₃ (L)]					
P(OEt) ₃	202-204	46.8 (47.4)	4.7 (4.7)		20.8 (21.0)	6.0 (5.8)	
$R,S[Fe_{7}(\eta,\eta-C_{5})]$	H₄CH(NMe₂)CH(N	$[Me_2)C_4H_4](CO)_2(L)]$					
DPPM	dec. 201	64.5 (65.0)	5.5 (5.5)	3.3 (3.5)	13.9 (14.1)	7.6 (7.8)	
DPPE	dec. 172	65.8 (65.3)	6.0 (5.7)	2.8 (3.2)	13.2 (13.8)	7.5 (7.6)	
$R, R/S, S$ -[Fe ₂ { η	.π-C _c H₄CH(NMe) ₂	CH(NMe ₂)C ₄ H ₄)(CC)) ₂ (L)]				
DPPM	192–194	65.3 (65.0	5.7 (5.5)	3.3 (3.5)			
DPPE °	dec. 256	64.0 (64.2)	5.8 (5.3)	3.3 (3.4)	13.6 (13.6)	7.5 (7.5)	
DPPP ^f	172-174	62.3 (62.3)	5.6 (6.1)	3.3 (3.2)		6.8 (7.0)	
$[Fe_2(\eta,\eta-C_5H_4C_5)]$	CH ₂ C(O)C ₅ H ₄ }(CO),(L)]					
DPPE ^g	181-184	65.6 (65.2)	5.3 (4.6)	0 (0)			
DPPE	181-183	64.2 (65.2)	5.1 (4.6)	0 (0)		8.3 (8.4)	
DPPP ^h	dec. 210	70.1 (70.6)	5.7 (5.8)	0 (0)	12.2 (12.0)	6.5 (6.3)	

^a DPPM = Ph₂PCH₂PPh₂; DPPE = Ph₂P(CH₂)₂PPh₂; and DPPP = Ph₂P(CH₂)₃PPh₂. ^b Melting points determined in sealed tubes; dec. denotes decomposition. ^c Calculated values in parentheses. ^d 1/3 C₆H₁₄ of crystallization. ^c H₂O of crystallization. ^f 2.5 H₂O of crystallization. ^g From direct reaction of $[Fe_2[\eta^5, \eta^{5'}-C_5H_4CH_2COC_5H_4](\mu-CO)_2(CO)_2]$ with DPPE. ^h 2 C₆H₅CH₃ of crystallization confirmed by ¹H NMR spectroscopy.

P(OME)₃) or R, R/S, S-[Fe₂{ η, η -C₅H₄CH(NMe₂)CH-(NMe₂)C₅H₄}{Ph₂P(CH₂)_nPPh₂}(μ -CO)₂]. In all cases the reaction yields were *ca*. 80%.

Elemental analyses (Table 1) were carried out by the Analytical Laboratory of University College, Dublin. IR spectra (Table 2) were recorded on Perkin Elmer 1710 and 1720 FTIR spectrometers, and NMR spectra (Table 3) on a JEOL JNM-GX270 spectrometer.

3. Results and discussion

The complex $[Fe_2(\eta-C_5H_5)_2(CO)_2(\mu-CO)_2]$ undergoes CO substitution by phosphines under relatively mild thermal conditions [1]. The corresponding reactions of various $[Fe_2\{\eta,\eta-C_5H_4-A-B-C_5H_4\}(CO)_2(\mu-CO)_2]$ derivatives occur much less readily. This implies that *trans*- $[Fe_2(\eta-C_5H_5)_2(CO)_2(\mu-CO)_2]$ is more labile than the *cis* isomer, but this is not the whole answer as the nature of A-B is important. When it is CH₂C(O), CH=C(NMe₂) or R,S-CH(NMe₂)CH(NMe₂), substitution may be brought about thermally, but not when it is R, R/S, S-CH(NMe₂)CH(NMe₂), CH₂CH(NMe₂), CH₂CH(OH) or CH₂CH₂. However, when A-B = R, R/S, S-CH(NMe₂)CH(NMe₂), substitution has been effected photolytically.

The ring-linking group A-B was unaffected in all substitution reactions except those involving R,S-[Fe₂{ η,η -C₅H₄CH(NMe₂)CH(NMe₂)C₅H₄)(CO)₂(μ -CO)₂] with Ph₂P(CH₂)_nPPh₂ when n = 2 or 3 (see below).

In refluxing di-n-butyl ether, the complexes $[Fe_2\{\eta, \eta-C_5H_4-A-B-C_5H_4](CO)_2(\mu-CO)_2]$ where $A-B = CH_2C(O)$ or $R,S-CH(NMe_2)CH(NMe_2)$ react with less bulky phosphines and phosphites, $L (= P(OMe_3), P(OEt)_3, PMe_3, PEt_3 \text{ or }PMePh_2 \text{ but not }PPh_3)$, to give $[Fe_2\{\eta,\eta-C_5H_4-A-B-C_5H_4\}(CO)(L)(\mu-CO)_2]$. When $A-B = R, R/S, S-CH(NMe_2)CH(NMe_2)$ similar substitution reactions take place only on simultaneous UV irradiation. A related complex where $L = P(OPh)_3$ and $A-B = CMe_2CMe_2$ was also obtained photolytically [2]. More than one CO ligand could not be replaced by L. In contrast, it is possible to prepare $[Fe_2(\eta-C_5H_5)_2(CO)_3(PPh_3)]$ [1] and $[Fe_2(\eta-C_5H_5)_2(POMe_3)_2(\mu-CO)_2]$, but the latter is very unstable [7].

TABLE 2. Infrared spectra (1550-2200 cm⁻¹) of compounds containing P^{III} ligands

Ligand (L)	Absorption bands *			· · · · · · · · · · · · · · · · · · ·	
	$\overline{\nu(CO)}$	ν(CO)	ν(μ-CO)	$\nu(\mu$ -CO)	
$\overline{R,S-[Fe_2(\eta,\eta-C_5H_4)]}$	CH(NMe2)CH(NMe2)C5H4	(CO)(L)(µ-CO) ₂]			
P(OMe) ₃	1966 (9.4)		1780 (0.9)	1747 (10)	
$P(OEt)_3$	1965 (9.8)		1779 (1.1)	1746 (10)	
PMe ₃	1941 (9.7)		1775 (0.9)	1744 (10)	
PEt ₃	1936 (8.3)		1775 (0.8)	1743 (10)*	
PMePh ₂	1962 (3.6)	1944 (9.3)	1771 (0.8)	1742 (10)	
$R, R/S, S$ -[Fe ₂ { η, η -4	C ₅ H ₄ CH(NMe ₂)CH(NMe ₂)C	C ₅ H ₄)(CO)(L)(μ-CO) ₂]			
P(OMe) ₃	1967 (9.4)			1748 (10)	
PMe ₃	1938 (8.2)			1748 (10)	
PEt ₃	1936 (9)			1744 (10)	
PMePh ₂	1962 (3)	1945 (10)		1742 (10)	
$[Fe_2\{\eta,\eta-C_5H_4CH_2\}$	2C(O)C ₅ H ₄)(CO)(L)(μ-CO) ₂				
P(OEt) ₃	1972 (10)			1758 (10)	
$R,S-[Fe_2(\eta,\eta-C_5H_4)]$	CH(NMe ₂)CH(NMe ₂)C ₅ H ₄)	(L)(μ-CO) ₂]			
DPPM			1729 (1.2)	1692 (10)	
DPPE			1728 (1.2)	1688 (10)	
$R, R/S, S$ -[Fe ₂ { η, η -4	C ₅ H ₄ CH(NMe ₂)CH(NMe ₂)C	L_5H_4)(L)(μ -CO) ₂]			
DPPM			1732 (0.8)	1691 (10)	
DPPE			1727 (0.9)	1690 (10)	
DPPP			1722 (1.1)	1685 (10)	
$[Fe_2(\eta,\eta-C_5H_4CH_2)]$	$C(O)C_{5}H_{4}(L)(\mu-CO)_{2}$				
DPPE			1740 (2)	1701 (10)	
DPPP			1737 (1)	1698 (10)	
[Fe ₂ {η,η-C ₅ H ₄ CH0	$(NMe_2)C_5H_4(L)(\mu-CO)_2$				
DPPE			1737 (0.7)	1699 (10)	

^a Peak positions in cm^{-1} with relative peak heights in parentheses. All spectra were run in hexane solution.

C ₅ H ₅) ₂ (CO) ₂ (L)] complex	es (L = $Ph_2P(CH_2)_nPPh_2$) measured in Cl	DCl ₃ solution at 293 K		
	Resonances ^a			
	C ₅ H ₄ ^b	H-CNMe ₂	NMe ₂	P ^{III} ligand
$A-B = R, S-CH(NMe_{2})CH$	((NMe ₂)			
P(OMe) ₃	5.14 (1), 5.10 (1), 4.98 (2), 4 70 (3) 4 70 (1)	3.16 (2)	2.23 (12)	3.57 (d, 9, J(PMe) = 11.2)
P(OEt) ₃	5.12 (1), 5.09 (1), 4.98 (1), 4.92 (1),	3.16 (2)	2.23 (12)	CH ₂ 3.98 (m, 6);
	4.86 (1), 4.77 (2), 4.64 (1)			$CH_3 1.19 (t, 9, J(HH) - 7.1)$
PMe ₃ °	5.08 (1), 5.05 (1), 4.99 (1), 4.92 (2),	3.13 (d, 1), 3.16 (d, 1)	2.23 (6)	1.0 (d, 9, J(PMe) = 9.16)
	4./3 (1), 4./ (1), 4.34 (1)	(1(HH) = 3.1)	(0) (7.7	
rme ₃ -	2.23 (1), 2.13 (1), 2.10 (1), 5.00 (1), 4.00 (3.18 (U.S, DT), 3.U/ (DT, 1) 2.08 (hr. 0.5)	2.19 (0, DT) 2.22 (6)	1.U2 (d, y, J(PMe) = 9.1 /)
			(0) 77.7	
PEt ₃	5.10 (2), 5.03 (1), 4.9/ (1), 4.89 (1), 100 (2), 177 (3), 172 (3)	3.13 (d, 1), 3.15 (d, 1)	(71) 77.7	CH ₂ 1.28 (m, b);
	4.80 (1), 4.77 (1), 4.63 (1)	(1(HH) = 2.9)		Me 1.05 (m, 9, J(PMe) = 14.3, J(HH) = 7.5)
PMePh ₂	5.09 (2), 4.99 (1), 4.92 (2),	3.23 (2)	2.22 (6)	Ph 7.3-7.6 (m, 10)
ı	4.45 (1), 3.90 (1)		2.23 (6)	CH_3 1.46 (d, 3, J(PMe) = 9)
Ph ₂ PCH ₂ PPh ₂	5.06 (2), 4.70 (2), 4.64 (2), 3.86 (2)	3.35 (2)	2.28 (12)	Ph 7.21–7.36 (m, 20);
				CH ₂ 1.88 (m, 1) 1.68 (m, 1)
				(J(PH) = 9.9, J(HH) 14.5)
Ph ₂ P(CH ₂) ₂ PPh ₂	4.94 (2), 4.63 (2),	3.37 (2)	2.22 (12)	Ph 7.65 (8), 7.39 (12);
	4.12 (br, 2), 3.88 (br, 2)			CH ₂ 1.40 (m, br, 4)
$A-B = R, R/S, S-CH(NM\epsilon)$	e,)CH(NMe,)			
P(OMe) ₃	⁻ 5.13 (1), 5.10 (1), 4.92 (1), 4.80 (1),	2.98 (d, 1), 3.03 (d, 1)	1.99 (6)	3.57 (d, 9, <i>J</i> (PMe) = 11.2)
I	4.70 (2), 4.63 (1), 4.52 (1)	(J(HH) = 11.6 Hz)	1.97 (6)	
P(Me) ₃	5.09 (1), 5.07 (1), 4.75 (1), 4.71 (1),	2.99 (2)	1.99 (6)	1.05 (d, 9, $J(PMe) = 9.1$)
	4.67 (1), 4.65 (1), 4.60 (1), 4.50 (1)		1.96 (6)	
P(Et) ₃	5.10 (1), 5.07 (1), 4.76 (1),	2.96 (2)	1.98 (6)	CH ₂ 1.27 (m, 6)
	4.70 (2), 4.66 (1), 4.64 (1), 4.51 (1)		1.95 (6)	Me 1.04 (m, 9, $J(PMe) = 14.5$, $J(HH) = 7.7$)
PMePh ₂ °	5.00 (2), 4.83 (2), 4.72 91), 4.54 (1),	2.95 (d, 1), 3.11 (d, 1)	1.95 (6)	Ph 7.20-7.62 (m, 10)
I	4.52 (1), 4.39 (1)	(J(HH) = 11.7)	1.90 (6)	Me 1.47 (d, 3, $J(PMe) = 8.6$)

TABLE 3. ¹H NMR spectra of [$Fe_2(\eta,\eta,-C_5H_4-A-B-C_5H_4/(CO)_3(L)$] (L = tertiary phosphine), [$Fe_2(\eta,\eta,-C_5H_4-A-B-C_5H_4)(CO)_2(L)$] (L = $Ph_2P(CH_2)_nPPh_2$), and [$Fe_2(\eta,-C_5H_4-A-B-C_5H_4)(CO)_2(L)$] (L = $Ph_2P(CH_2)_nPPh_2$), and [$Fe_2(\eta,-C_5H_4-A-B-C_5H_4)(CO)_2(L)$] (L = $Ph_2P(CH_2)_nPPh_2$), and [$Fe_2(\eta,-C_5H_4-A-B-C_5H_4)(CO)_2(L)$] (L = $Ph_2P(CH_2)_nPPh_2$).

M.G. Cox, A.R. Manning / CO-substitution reactions of $[Fe_2\{\eta-C_5H_5\}_2(CO)_2(\mu-CO)_2]$ analogues

*

PMePh ₂ ^d	5.07 (1), 5.03 (1), 4.99 (1), 4.91 (1),	2.97 (d, 1), 3.18 (d, 1)	2.14 (br, 3)	Ph 7.38–7.43 (br, 10)
	4.80 (1), 4.63 (1), 4.42 (1), 3.86 (1)	(J(HH) = 11.8)	1.58 (br, 3) 1.91 (br, 6)	Me 1.59 (d, 3, <i>J</i> (PMe) = 8.6)
Ph ₂ PCH ₂ PPh ₂	4.62 (2), 4.53 (2), 4.46 (2), 4.10 (2)	3.17 (2)	2.03 (12)	7.20–7.68 (m, 20); CH , 1.72 (t. 2, J(PH) = 9.9)
Ph ₂ P(CH ₂) ₂ PPh ₂	4.88 (2), 4.56 (2), 4.51 (2), 3.20 (2)	3.04 (2)	1.90 (12)	Ph 6.91 (6), 7.20 (2), 7.34 (8), 8.13 (4); CH, 1.34 (m. br. 4)
Ph ₂ P(CH ₂) ₃ PPh ₂	3.01 (2), 4.43 (2), 4.50 (2), 4.90 (2)	3.01 (2)	1.89 (12)	Ph 7.06–7.25 (m, 20); CH ₂ 1.33 (br, 4), 0.70 (br, 2)
A-B = CH ₂ C(O) P(OEt) ₃	5.24 (2), 5.10 (2), 5.04 (2), 4.94 (2)	CH ₂ 2.94 (2)		CH_2 3.97 (m, 6) CH_2 1.70 (f. 9.70(HH) = 7.1)
Ph ₂ P(CH ₂) ₂ PPh ₂	5.22 (2), 4.85 (2), 4.14 (2), 3.84 (2)	CH ₂ 2.87 (2)		Ph 1.53 (br, 8), 7.43 (br, 12) CH 2.140 (m, 4)
Ph ₂ P(CH ₂) ₃ PPh ₂ ^c	4.82 (2), 4.63 (2), 4.47 (br, 2), 3.71 (br, 2)	CH ₂ 2.81 (2)		Ph 7.66 (br, 8), 7.41 (br, 12); CH ₂ 1.43 (m, 4), 0.8 (m, 2)
$[\operatorname{Fe}_2(\eta-\operatorname{C}_5\operatorname{H}_5)_2(\operatorname{CO})_2(\operatorname{L})]$ $\operatorname{Ph}_2\operatorname{P}(\operatorname{CH}_2)_2\operatorname{PPh}_2^{\ f}$	C ₅ H ₅ = 4.11 (10)			Ph 7.65 (br, 8), 7.39 (br, 12); CTJ 1 31 (A 4 (7PH) - 11 0)
Ph ₂ P(CH ₂) ₂ PPh ₂ ^g	$C_5H_5 = 4.11 (10)$			Provide the second seco
Ph ₂ P(CH ₂) ₃ PPh ₂ ^f	$C_{s}H_{s} = 4.10(10)$			CH ₂ 1.67 (m, br, 2), 0.92 (m, br, 2) Ph 7.62 (br, 8), 7.36 (br, 12); CH, 1.35 (m, 4), 0.71 (m, 2)
Ph ₂ P(CH ₂)3PPh ₂ ^h	$C_5H_5 = 4.10$ (10)			Ph 8.96 (t, 2), 7.91 (t, 2), 7.79 (t, 2), 7.50 (q, 4), 7.26 (t, 4), 7.08 (t, 2), 6.96 (t, 2), 6.54 (t, 2); CH ₂ 1.35 (m, 4), 0.81 and 0.68 (br, 2)
^a Chemical shifts measured	d as ppm downfield from Me ₄ Si as an inte	rnal standard with integrations in pa	arentheses. All resona	inces are singlets unless it is stated otherwise. d

Common shifts measured as ppm downfield from Me₄Si as an internal standard with integrations in parentheses. All resonances are singlets unless it is stated otherwise. d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants J quoted in Hz. ^b All C₅H₄ resonances are multiplets and C₅H₅ are singlets. ^c Spectrum run in CD₂Cl₂ solution at 298 K. ^d Spectrum run in CD₂Cl₂ solution at 188 K. ^e Spectrum run in CD₂Cl₂ solution at 273 K. ^f Spectrum run in CD₂Cl₂/CS₂ (1:1) solution at 303 K. ^g Spectrum run in CD₂Cl₂/CS₂ (1:1) solution at 183 K.

The photolytic reactions of R, R/S, S-[Fe₂(η, η - $C_5H_4CH(NMe_2)CH(NMe_2)C_5H_4\}(CO)_2(\mu-CO)_2$ with $Ph_2P(CH_2)_nPPh_2$ (n = 1, 2 or 3) were shown by IR spectroscopy to proceed via $[Fe_2\{\eta, \eta-C_5H_4-A-B C_5H_4$ (CO)(L)(μ -CO)₂] intermediates, presumably containing η^1 -diphosphine ligands. The concentration of these species is never high, and they disappear before the end of the reaction to leave R, R/S, S-[Fe₂- $\{\eta, \eta - C_5H_4CH(NMe_2)CH(NMe_2)C_5H_4\}\{Ph_2P(CH_2)_n$ PPh_2 (μ -CO)₂] as the sole products. In contrast, the thermal reactions of $R_{,S}$ -[Fe₂{ η,η -C₅H₄CH(NMe₂)- $CH(NMe_2)C_5H_5(CO)_2(\mu-CO)_2$] with $Ph_2P(CH_2)_n$ -PPh₂ are more complicated. They also proceed via $[Fe_{2}(\eta, \eta - C_{5}H_{4} - A - B - C_{5}H_{4})(CO)(L)(\mu - CO)_{2}]$ intermediates but the final products depend on n. When n = 1, only $R_{,S}$ -[Fe₂{ η, η -C₅H₄CH(NMe₂)CH(NMe₂)- $C_{5}H_{4}$ {Ph₂P(CH₂), PPh₂ {(μ -CO)₂] was obtained. However, when n = 2 a second product was also formed, $[Fe_2\{\eta,\eta-C_5H_4CHC(NMe_2)C_5H_4\}\{Ph_2P (CH_2)_n PPh_2$ (μ -CO)₂], which is the more important of the two when n = 3. Their ratio goes from 100:0 when n = 1, to ca. 60:40 when n = 2 and ca. < 5: > 95when n = 3. As these compounds had to be separated by chromatography, the second products were not isolated as such but as $[Fe_2\{\eta, \eta, -C_5H_4CH_2C(O) C_{5}H_{4}$ {Ph₂P(CH₂)_nPPh₂}(μ -CO)₂] (cf. ref. 6). However, they were identified by comparison of their spectra with those of authentic samples.

The conversion of $A-B = R_{,S}-CH(NMe_{2})CH$ - (NMe_2) to CH=C(NMe_2) is a Me₂NH elimination reaction which has been achieved more formally by methylation followed by treatment of the salt with base, *i.e.* $A-B = R,S-CH(NMe_2)CH(NMe_2) \rightarrow R,S CH(NMe_2)CH(NMe_3)^+ + OH^- \rightarrow CH=C(NMe_2)$ [6]. However, in the present case there are no obvious electrophiles or strong bases, and the reaction appears to have no counterpart in conventional organic chemistry. It does not take place when solutions of R_{s} - $[Fe_2\{\eta,\eta-C_5H_4CH(NMe_2)C_5H_4\}(CO)_2(\mu (CO)_2$] or R,S-[Fe₂{ η,η -C₅H₄CH(NMe₂)CH(NMe₂)- $C_{5}H_{4}$ {Ph₂P(CH₂)₂PPh₂}(μ -CO)₂] in di-n-butyl ether are with refluxed with or without UV irradiation in the presence or absence of added water and, in the latter case, added Ph₂P(CH₂)₂PPh₂. The product dependence on the length of the $(CH_2)_n$ chain is puzzling, but it may indicate that the η^1 -Ph₂P(CH₂), PPh₂ intermediate is the reactive species and that the uncoordinated P atom plays a role.

Both $[Fe_2\{\eta,\eta-C_5H_4-A-B-C_5H_4\}(CO)_2(\mu-CO)_2]$ where $A-B = CHC(NMe_2)$ and $CH_2C(O)$ react with $Ph_2P(CH_2)_2PPh_2$ in refluxing di-n-butyl ether to give $[Fc_2\{\eta,\eta-C_5H_4-A-B-C_5H_4\}\{Ph_2P(CH_2)_2PPh_2\}-(\mu-CO)_2]$.

3.1. Infrared spectra

The positions of the absorption bands due to ν (CO) vibrations of the metal carbonyl ligands are summarized in Table 2. In general their relative intensities and frequencies are what would be expected by comparison with their counterparts derived from *cis*-[Fe₂(η -C₅H₅)₂(CO)₄]. The spectra of complexes where A-B = CH₂C(O) all show an absorption band of medium intensity at *ca*. 1680 cm⁻¹ due to the ketone ν (CO) vibration.

In solution, the spectra of $[Fe_2(\eta, \eta, -C_5H_4-A-B C_5H_4$ (CO)(L)(μ -CO)₂] where A-B = R,S and R, R/S, S-CH(NMe₂)CH(NMe₂) and L = PR₃ (R = Me, Et, OMe or OEt) show a single ν (t-CO) absorption band, and two bands, one weak and one strong, due to their symmetric and antisymmetric $\nu(\mu$ -CO) vibrations, respectively. In the solids the spectra are similar but often more complex due to solid state effects. In contrast, when $L = PMePh_2$ the solution spectra show two unequal ν (t-CO) bands, and the more intense $\nu(\mu$ -CO) band is very asymmetric. This behaviour may be due to the presence of isomers arising from restricted rotation about the Fe-P bond, similar to that observed for $[Fe(\eta - C_5H_5)(CO)(L)I]$, $[Mn(\eta - C_5H_4Me)(CO)_2L]$ and related mononuclear compounds [8]. It is the first time that it has been reported for dinuclear complexes, and it is surprising that the effect on the μ -CO ligands is much less than that on the t-CO ligand coordinated to the other Fe atom (but see below).

In general terms the replacement of one and then both t-CO groups in the $[Fe_2[\eta,\eta-C_5H_4-A-B C_5H_4$ (CO)₂(μ -CO)₂] complexes by P^{III} ligands results in greater back-bonding to the remaining CO ligands and $\nu(CO)$ frequencies which all decrease on each substitution. However, the true situation may not be so simple. Comparison of the spectra of $[Fe_2\{\eta,\eta-C_5H_4 A-B-C_5H_4$ (CO)(L)(μ -CO)₂] for L = P(OMe)₃ with those for $L = PEt_3$ show that whereas the ν (t-CO) frequencies decrease by ca. 30 cm⁻¹, the $\nu(\mu$ -CO) decrease by only $ca. 5 \text{ cm}^{-1}$ (Table 2). This strongly implies that the increased electron density on one Fe atom on going from $L = P(OMe)_3$ to $L = PEt_3$ is removed largely by the t-CO group coordinated to the other metal atom rather than the two shared μ -CO ligands.

3.2. ¹H NMR spectra and fluxionality

The spectra are summarized in Table 3. They are readily assigned by comparison with those of related systems. The cyclopentadienyl resonances have not been assigned to specific protons. There is no evidence of coupling of 31 P to the protons of A–B, although

there may be such coupling to some of the cyclopentadienyl protons. This was not investigated further.

Many of the spectra are temperature-dependent owing to various fluxional processes within the C_5H_4 -A- $B-C_5H_4$ and $Ph_2P(CH_2)_nPPh_2$ ligands. The first of these are similar to those observed in the $[Fe_2(\eta, \eta)]$ C_5H_4 -A-B- C_5H_4 (CO)₄ precursors [6]. Thus, the C-C(O)-C₅ moiety is planar in $[Fe_2\{\eta,\eta-C_5H_4 CH_2C(O)C_5H_4$ (CO)₄ and the two CH_2 protons are inequivalent, but they interchange rapidly on the NMR time scale even at low temperatures. When A-B =R,S-CH(NMe₂)CH(NMe₂), the two CH(NMe₂)-C₅H₄ moieties are inequivalent, and appear so in solution at low temperature, but on warming, a partial rotation about the ring-linking C-C bond results in rapid exchanges; furthermore the two different NMe₂ groups undergo rapid rotation-inversion processes, which render their methyl groups equivalent at room temperature, but in some instances these may be slowed on cooling. In contrast, when A-B = R, R/S, S- $CH(NMe_2)CH(NMe_2)$, the two $CH(NMe_2)C_5H_4$ moieties are equivalent, and there is no partial rotation about the C-C bond which could result in interchange H and NMe₂ groups; the rotation-inversion of the NMe₂ groups may be slowed in some cases. Where activation energies ΔG_{T_c} for these processes have been calculated from coalescence temperatures T_c [9], they are close to the values obtained for the $[Fe_2(\eta, \eta)]$ $C_5H_4-A-B-C_5H_4$ (CO)₂(μ -CO)₂] precursors [6]. $(\Delta G_T = ca. 10.6 \text{ kcal mol}^{-1} \text{ for the restricted rotation})$ about the ring-linking C-C bond when A-B is R,S- $CH(NMe_2)CH(NMe_2)$ and ca. 9 kcal mol⁻¹ for rotation-inversion of the NMe2 groups in both this and its R, R/S, S isomer.)

Another effect of A-B may be the lowering of the overall molecular symmetry compared with that for cis-[Fe₂(η -C₅H₅)₂(CO)₂(μ -CO)₂]. Thus when A-B = $CH_2C(O)$ the two terminal sites are always inequivalent but the bridging sites are equivalent even at low temperatures (two isomers of $[Fe_2(\eta, \eta - C_5H_4 CH_2C(O)C_5H_4$ (CO) (P(OEt)₃) (μ -CO)₂] are possible, but only one appears to be formed (Table 3)); when $A-B = R,S-CH(NMe_2)CH(NMe_2)$, the two bridging sites are always inequivalent but the terminal sites are equivalent until the partial rotation about the C-C bond slows, when they become inequivalent; and when $A-B = R, R/S, S-CH(NMe_2)CH(NMe_2)$, both terminal and bridging sites are equivalent but the molecule does not possess a plane of symmetry. The ¹H NMR signals from the phosphine ligands are also affected in more subtle ways, as the presence of chiral carbon atoms in A-B leads to inequivalent protons of the CH₂ groups of $P(OEt)_3$ and $Ph_2P(CH_2)_nPPh_2$ ligands. It was to by-pass these problems that we studied first the ¹H NMR spectra of $[Fe_2(\eta - C_5H_5)_2(Ph_2P(CH_2)_nPPh_2)(\mu -$ (n = 2 or 3), which are easier to interpret. Both of these complexes show a single C₅H₅ resonance at all temperatures down to 183 K, indicating that the two $Fe(C_5H_5)PPh_2$ moieties remain indistinguishable. When n = 2, the CH₂ doublet splits on cooling into two multiplets, as do each of the two broad Ph resonances. This appears to be due to a slowing of a conformational change in the Fe-P-C-C-P-Fe ring, which interchanges and renders equivalent, the CH₂ protons and the two Ph groups on each of the equivalent Ph_2PCH_2 moieties. However, there are two possible arrangements of the P-C-C-P chain with respect to the Fe-Fe bond. In one, both of the CH_2 groups lie on the same side of the Fe_2P_2 plane, and in the other, these groups lie on opposite sides. The available evidence suggests that only one arrangement is present in the case under consideration, but does not define which, although we favour the second since this would have a cisoid staggered arrangement of the two CH₂P moieties. When n = 3, similar processes appear to take place. The changes in the CH₂ resonances are not so clear. Although the broad resonance due to the central group splits into a broad doublet on cooling, the broad multiplet due to the terminal methylenes becomes broader and less well-defined. On the other hand, the two broad Ph resonances change to a total of eight well-defined resonances showing detailed ¹H-¹H coupling. Perhaps the rotation of the Ph groups is slowed also, but it is not clear why this does not happen when n = 2. The values obtained for ΔG_{T_c} (Table 4) are similar (ca. 11.5 kcal mol⁻¹) in both compounds. This suggests that their most important components are due to the barriers to restricted rotation about the Fe-P bond arising from the relatively bulky phenyl groups rather than to restricted rotations within the $P(CH_2)_n P$ chains.

The ¹H NMR spectra of the $[Fe_2\{\eta,\eta-C_5H_4-A-B-C_5H_4\}\{Ph_2P(CH_2)_nPPh_2\}(\mu-CO)_2]$ derivatives (n = 2 or 3) also vary with temperature, indicating that conformational changes within the $Fe-Fe-P(CH_2)_nP$ ring and, perhaps, rotation of the phenyl groups can be slowed. However, these spectra are not amenable to

TABLE 4. Energies of activation ΔG_{T_c} and coalescence temperatures T_c for fluxional processes within the Fe-P-(CH₂)_n-P-Fe moieties of [Fe₂(η -C₅H₅)₂{Ph₂P(CH₂)_nPPh₂)(μ -CO)₂] complexes

n	Resonance	Т _с (К)	$\frac{\Delta G_{T_c}}{(\text{kcal mol}^{-1})}$
1	CH ₂	237	11.9
1	Ph	253	11.3
2	CH ₂	245	11.3
2	Ph	240	11.5
2	Ph	248	11.4

detailed interpretation owing to the lowered molecular symmetry and fluxional processes within the C_5H_4 -A-B- C_5H_4 ligands, as mentioned above. At lower temperatures there are often a plethora of weak, overlapping resonances, and the problem is further complicated by sample solubility.

Acknowledgement

We thank Irish Industrial Gases for a grant to M.G. Cox.

References

1 R.J. Haines and A.L. DuPreez, *Inorg. Chem.*, 8 (1969) 1459; R.J. Haines and A.L. DuPreez, *J. Organomet. Chem.*, 21 (1970) 181;

F.A. Cotton, L. Kruczynski and A.J. White, Inorg. Chem., 13 (1974) 1402.

- 2 F.A. Cotton, D.L. Hunter, P. Lahuerta and A.J. White, Inorg. Chem., 15 (1976) 557.
- 3 G.O. Nelson and M.E. Wright, Organometallics, 1 (1982) 565.
- 4 G.O. Nelson and M.E. Wright, J. Organomet. Chem., 206 (1981) C21.
- 5 R.B. King and M.B. Bisnette, Inorg. Chem., 3 (1964) 801.
- 6 B. Callan, M.G. Cox, A. McCabe, A.R. Manning, Pardeep Sayal, P. Soye, S.C. Wade, F.S. Stephens, P. McArdle and D. Cunningham, J. Organomet. Chem., 466 (1994) 185.
- 7 Shulin Zhang and T.L. Brown, J. Am. Chem. Soc., 115 (1993) 1779.
- 8 D.A. Brown, H.J. Lyons and A.R. Manning, *Inorg. Chim. Acta, 4* (1970) 428; F.A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry*, 4th edition, Wiley, New York, 1980, p. 1077.
- 9 H. Shanan-Atidi and K.H. Bar-Eli, J. Phys. Chem., 74 (1970) 961.